The Proper Interval Colored Graph Problem for Caterpillar Trees

نویسندگان

  • C. Àlvarez
  • N. Serna
چکیده

This paper studies the computational complexity of the Proper interval colored graph problem (picg), when the input graph is a colored tree. We show that the problem is hard for the class of caterpillar trees. To prove our result we make use of a close relationship between intervalizing problems and graph layout problems. We deene a graph layout problem the Proper colored layout problem (pclp). Although the pclp is not equivalent to the picg, by transforming the input graph we will establish a close relationship between both problems. The main result is that the picg is NP-complete for colored caterpillars of hair length 2 and in P for caterpillars of hair length 1 or 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the proper intervalization of colored caterpillar trees

This paper studies the computational complexity of the Proper interval colored graph problem (picg), when the input graph is a colored caterpillar, parameterized by hair length. In order prove our result we establish a close relationship between the picg and a graph layout problem the Proper colored layout problem (pclp). We show a dichotomy: the picg and the pclp are NP-complete for colored ca...

متن کامل

Constructing Graceful Graphs with Caterpillars

A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...

متن کامل

Planar Packing of Binary Trees

In the graph packing problem we are given several graphs and have to map them into a single host graph G such that each edge of G is used at most once. Much research has been devoted to the packing of trees, especially to the case where the host graph must be planar. More formally, the problem is: Given any two trees T1 and T2 on n vertices, we want a simple planar graph G on n vertices such th...

متن کامل

Some relations between Kekule structure and Morgan-Voyce polynomials

In this paper, Kekule structures of benzenoid chains are considered. It has been shown that the coefficients of a B_n (x) Morgan-Voyce polynomial equal to the number of k-matchings (m(G,k)) of a path graph which has N=2n+1 points. Furtermore, two relations are obtained between regularly zig-zag nonbranched catacondensed benzenid chains and Morgan-Voyce polynomials and between regularly zig-zag ...

متن کامل

Graph Inference from a Walk for TRees of Bounded Degree 3 is NP-Complete

The graph inference from a walk for a class C of undirected edge-colored graphs is, given a string x of colors, nding the smallest graph G in C that allows a traverse of all edges in G whose sequence of edge-colors is x, called a walk for x. We prove that the graph inference from a walk for trees of bounded degree k is NP-complete for any k 3, while the problem for trees without any degree boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004